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1. The following differential equation is considered

Tt O—pa@y=0 .

Here a(t) is a real periodic function of t, with period w determined
by the expansion

o
a()= D ae, a_, = a,, Imao=0 (1.2
8= (D
Let us assume that some of the first few terms of the expansions de-
termining the boundary of the region of instability on the plane of the
parameters p, A have been found by the method of a small parameter ([1],
p.321). Here A, () > A (1)

Ay @ =nd+pby+pls+ ... +pb + & @)

(n=0,1,2,... 1.3
Ap) = tpa+plat . b e @ i o

We shall attempt to obtain estimates of the functions €,(K) and €, (1)
in terms of the coefficients ag of the Fourier series (1,2) and of some
already known coefficients bs and € of the expansion (1.3).
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2. On the boundary of the region of instability of the equation (1.1
there exists a periodic solution of period 27 and of the form [1)

(s
y=enil 2 2kt y, 2.1)
k=—o0
Substituting (2.1) into the equation (1.1), we find an infinite
system of linear algebraic equations for the determination of the
quantities Y

o
A—(»+ 202y, —p Z Gy ¥, =0 (k=0,+1,%2,..)) (2.2)
§=-—00

The condition for the existence of & nontrivial periodic solution of
the equation (1.1) of period 2w yields an equation that determines the
boundary of the region of instability. One can obtain this condition in
explicit form if one equates to zero the infinite determinant of Hill.
The latter can be transformed into a finite order determinant [2]. A
more natural procedure is the use of a method ([3], pp. 164 to 168) used
already earlier for the equation (1.1) in the work [4]. This method is
employed below, and it leads to an equation that coincides with an equa-
tion of the work [2].

For the time being, let us exclude from our consideration the two
equations of (2.2) for which ¢ = 0, and —n (when n = 0, we exclude only
one equation with k = 0). The quantities yk(k # 0, —n) shall be ex-
pressed by means of complex-conjugate quantities Yor Y_pe We substitute
the obtained expressions for y,(k # 0, —n) into the remaining two equa-
tions (when n = 0 only one equation) in order to find Yo 8nd y_,. The
condition for the existence of a non-zero solution y, determines the
boundary of the region of instability.

3. Let us consider the zero region of instability n = 0. We introduce
the notation

d, (k) = [A + (r + 2k)%] 3.1)

When k # 0, the equations (2.2) can be written in the form

Ye=p O do(k) ay_,y, + pdo (k) 2y (k=%1,%2,..) (3.2

§=-—00
The prime (') on the sum indicates here and in what follows that the
terms with the indices 0, —n (here —n = 0) are omitted from the sunm,

By the method of successive approximations ([3], p. 160) we obtain
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wl

ve=[ndo B oy + 1 T do(h) o do (@) ot @.3)
a=—o0

Substituting (3.3) into (2.2) with & = 0 and dividing by Yo # 0, we
obtain

[eo] [+]
A=pao+p? Y a,do(@)a, +pd D) a_,do(®)a, pdo(B)ay +
a=--00 a, f=-00
it Y b @, g ® e Mt .. =T@N (34
a, B, y=—

4. From the equation (3.4) one can obtain Ao(u) in the form of a
power series in p. Let us construct a dominating series (majorant) for
the right part Y(u, A) of the equation (3.4) of the work [53.

Suppose that the power series in u of fl(“) (or the series for
Pylm, A) in powers of u and A) is dominated by the series for fa(w) (or
P,(H, A)). We will denote this by writing

hw < f @, @1, 4) <92 (1, A) (4.1)

Let us introduce the notation

n= D |l Ta = max |a,], g () = (4 — 1 (4.2)
Yok

if 'h' < 4 we obtain for dg(k) in (3.1) the relation
B =0d—4)1 G —N1=qQ) (k=%1,%2,..) (4.3)
If one considers the system of equations (3.2) in the linear normed
space =, then the system of equations (3.2) will be entirely regular

([3], pp. 67,167) when uy;q(A) < 1. Hereby the right-hand side of (3.4)
¥(u, A) is dominated by the series

¥ @, A) <€pre + 112 @ng) + pr: @ng)? .. o=pre (1 — prig)?t (4.4)

Solving the equation

A=pr [t —pn G — 177 (4.5)

for A, we obtain the function A(u) which dominates [5) the solution
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Ao(u) of the equation (3.4)

AQ@=2+4+05T—"7)— Vi— 281+ 1) + 0.254% (11 — Ta)? =
=2+05Mm—1)—2V =02 (V1 + V1Pl 1 — 0.5 (V11— V 10%) (4.6)

Let us introduce the notation, which makes use of the quantities Yir
Y, determined by (4.2)

by =025 (V1+ Vni b =025 (V11— V1)? (4.7

It is easy to verify the inequality

VA=) (1 —ha) < (4 — b)) (1 — ha)? =

1 ( hy hy ) 1 k ppk+1 k+1
= _ = pe (T — BT (4.8)
hi—h\l—ph A—ph/ Yy ,Z'o
Computing directly in (4.6) the coefficients of the powers u°, ul
and dropping the terms with h2 in (4.8), we obtain a series which
dominates Ao(u). the solution of the equation (3.4)

nlv-

Mo @) <prat 2k (um) 2 Reh)', m=0235Fn+ V@ 49

k=2

We have thus obtained the following theorenm.

Theorem 4.1. The expansion of the function Ao(u) in powers of g,
which determines the boundary of the zero region of instability
(Ao(u) -~ 0 as B — 0) of the solutions of the equation (1.1), is domi-~
nated by the series (4.9) which converges when

pISm=hr'=4V 11+ Vi? (4.10)

Note 4.1. Since y; > y, (4.2), it follows that A=l > yl‘l. Therefore
the series which determines Ao(u) converges when

o]
lpl<ussn'1=( S |a,|)-1 (4.11)
$=-—00, 8750
Note 4.2. Let us introduce into (3.4) a new parameter A=A - Hag.
Then one can construct a dominating function for Y(u, A) (3.4) which

does not contain terms O(p). This yields a new condition for convergence
of the series that defines Ao(u)
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Rl<pms =42V +2V1h ps>m>pe (4.12)

Note 4.3. Prom the convergence of the expansions of Anl(u), Anz(u)
(1.3) follows the convergence of the power series in u of the periodic
solutions of the equation (1.1).

Example 4.1. Let us find the condition for convergence of the series
defining A o (W, the boundary of the zero region of instability of the
equation of Mathieu ([6]. pp. 18, 25)

Pyfdt+ (h— 2ncos2)y=0 (4.13)

From (1.2) we find @y Ta_; = 1. From (4.2) and from (4.10) to (4.12)
we obtain

1= 2, Te = 1, m = 0.69, R = 0.5, By =~ 0.83 (4'14)

The series for A, (u) ([6], p. ) is

68687
Ao (W) = "—_;’”2 + éﬁ‘lﬁ 304“' +1ss74333l" + . (4.15)

which is known to converge when Iul < 0.83.

Example 4.2. For the differential equation

dy/di®+ A+ p (1 + 2cos 2t + 4cos )]y = 0 (4.16)

we obtain by the method of a small parameter ([l], p. 321) the equation

M@ =—p—p+em, e =0 @) (4.17)
From (4.2), (4.7) and (1.2) we find
(4.18)
aw=—1, gq=a1=—1, sG=a2=—2, =7 T=2, k=407
From (4.9) we obtain an estimate for &(p) when ,ul < 0.245
e 1< -2 S = T (4.19)

VTITZ k+=3 —4. 07“'

5. Let us consider the case n # 0; n =1, 2, ... . We will take the
equation (2.2) in the form

[ee}

V=1 Y dy () gy, v, + d, (B) (090 + a4 09_0) 5.1)

8=-—00
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The method of successive approximations [2] yields, when k # 0, —-n

yk=p[dn(k) a, + n 2 d, (k) ay_,d, (a)a, + ...]yo+

o =—Q0

+ p[d,, B apn + B S dy (6 ayq dy (@) agyn + - - ] v, .2)

&==—00

Substituting y,(k # 0, —n) from (5.2) into the remaining two equa-
tions (2.2) when k = 0, —-n, we obtain a system of two equations in two
unknowns y,, y_, -’

heMw+ @My, =0, htvVypw+h@ Ny ,=0 (5.3)

The bar above the letters indicates the complex conjugate. The func-
tions f, and f, have the form

AN =A—n'+pat+p? D o d @a+...
a=—00 (5.4)

A =pa,+ut D e d @ agn ...

@ =—00

The condition for the existence of a non-zero solution of the system
(5.3) yields the equation of the boundary

@M= 1h@aE=0 (5.5)

Assuligg that A and u are real, we introduce the notation, when
A=z +n

Re fi @, M) = A — n? + pao + piR; @, 2), Im f; @, A) = p*Rs (4, 2) (5.6)
Re fs (4, 1) = p Reap + p*Rs (s, 2), Imfy @A) =plman +p'Re(@, 5

The equation (5.5) solved for z = A —n2, yields
5.7)

2 = — pao + p'Ry £ V¥ la, [T+ 2 (Re apRs + Im o, R)) + p* R + BRI — RY)

It is necessary to determine the region of convergence of the series
that determines the solution 7\n(u) of the equation (5.7). We introduce
an auxiliary lemma ([5]. p.52).

Lemma 5.1. Suppose that z({) is an implicit function of p defined by
the equation

z= gioph + golt® + gupz + gt + .. . =T @, 2 (5.8)
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where the right-hand side Y(u, z) is a holomorphic and bounded function
when

wl<r |z]<p, |¥Y@2|I<M (5.9
In this case z(W) is given by a series which converges when

lp | < r*=rp®(p + 2M)72 (5.10)

and the series for z is dominated under the condition (5.10) by the
series

2 202 00 k
gM(p(:-—l—"Ajlll)F Z(?‘) >z () (5.11)
k=1

Proof. Let us solve the auxiliary equation whose right-hand side
dominates the function Y(m, z) ([5], p.52)

z=M{1 —pr )1 — o)1 — M — Mzp? (5.12)

From (5.12) we have

=T :-i—M) {1“ [‘ — (5 +p2M )2]% [‘ ‘erh}<
2 271, ~1
<zorm - F ()T -4 —1<

<t 3 () (52

(5.13)

The stated lemma follows from (5.13).

6. Let us consider the case o # 0, that is the case for which the
width of the region of instability is O(n). From (5.7) we obtain as a
first approximation

Ap=n—paotpia, | +0@), 056 —c)=]|a|+0 (6.1)

Let us evaluate the functions Rl' ey, R4 in (5.6). From (3.1) and
(4.2) we have the inequalities for the powers of z = A - n2

d,B)=Ah—(n+201=A—n*—d4n(n+ BT << q (2 (6.2)
where

z=A— n?, g{zd) =G — 97, f21<4 (6.3)

Analogously to (4.4) we obtain from (5.4) and (5.6) the estimates



854 K.G. Valeev

R+ iR €NiTeq () ({ —prig ()T =R (u, 2)

, 6.4
Ry+ iR <€ 1a1ag (9 (4 — pTag () = R (u, 2 €4
where, similarly to (4.2), we use the notation
o0
= 2 lal, T =max|as| (s=0,%1,%2,..) (6.5)
r=—o00 ®
8#0, -n

The radical in (5.7) will be a holomorphic function of u and z (6.3)
in the region

ini<r, lzt <o, 04 (6.6)

if the following inequality is satisfied in the region (6.6):
[2p]an|% (Rea, Ry+ Ima,R) +p?lay) 2 (RE + RE—RAI<L  (6.7)
By means of the obvious inequality
a+bi|l-let+dil=1(@at+b)(c—di)|l={actdb+ i(be —ad))>]ac+ db| (6.8)

and the notation R(M, 2) of (6.4), the inequality (6.7) can be trans-
formed into the form

2rla, |-'R (r, 0) + r*la, | "2R® (r, p) <1 (6.9)
or
ria | R(r, < V2—1, 0<e<4—rmVZ+1D1ala,]| 411 (6.10)

¥hen the inequality (6.10) is satisfied, the function represented by
the root in (5.7) will be holomorphic in the region (6.6). Let us esti-
mate the right-hand side of equation (5.7) in the regions (6.6) and
(6.10). From (6.7) and (6.10) it follows that the next inequality is
fulfilled in the region (6.6)
— pao + pER, + {1 [, 1?4 2u° (Re a Ry + Im o Ry + p* (RE + RE — RAY 1<
<rlaol+ PR (r,p) + ria | VESrliad +Q@VE=Ngjl=M (641

We introduce the notation
x1 = 0257, (V2 + 1) v2 lay"t + 1], xs =05 [laoi + @2 VZ— ia,ll 6.12)

In order to obtain, with the aid of Lemma 5.1, the largest value r*
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of the radius of convergence of the expansion An(u) (of the solution of
(5.7)) in powers of u, one must find

* = max rp? (p + 4y20)-2 0P <<4a(t— my), ogr (6.13)
By the usual method we find that the maximum is attained when

ro= 221+ 2+ Vi + 8yt Po=4& (1 —y1ro) 6.14

From Lemma 5.1, and from what has been said above, we deduce the next
theorem.

Theorem 6.1. The expansions of Anl(u) and Anz(u), with a, # 0 in

(1.2), where a, can be determined by the relation

a, = 0.5 limp-1 (A, () — Ay (W) 5= 0 (6.15)
]
converge when
(1< 7 = ropo® (Po -+ dyare)-? (6.16)

where rg» Pg are determined in (6.14), (6.12) and (6.5). These expansions
are dominated by the series

2y P’ (Po 4 dxare)® S Bk
" T o S 2 (1) > B (@47

Note 6.1, The radius of convergence r* (6.16) may turn out to be con-
siderably less than the actual radius of convergence.

Example 6.1. For Mathieuw’s equation (4.13), with n = 1, we have
lanl =1 # 0. From (6.5) we obtain Y1 =1, Yo = 1. From (6.12) we have
X; =0.853, Xg = 0.915. From the formula (6.14) we find that re = 0. 38,
Py = 2.7. Finally, from (6.16), the radius of convergence r* = 0,156,
while the dominating series (6.7) has the form

142 640" > M), M@ (6.18)

k=1

The actual expansion Al'l(u), Al'z(u) has the form ([6]. p.25)
— —l 241 .3 1 .4 1.5
A=Adp—cpd oW — it w+ 009 (6.19)

7. We shall now consider the last case for (1.1) when a, = 0. From
{(6.1) it follows that
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Apy @) — Ay () = O () (1=2,3,... (7.1)

Suppose that we know the first coefficients bs, c
of the expansion (1.3), and that we have found that

s (s =1, 2, ..., n

b1—61=0,...,b[_1-—01_1=0, bl-—c,=2m>0 (7.2)

From the equations (5.7) and (7.2) it follows that

Vit (B2 + RE— RA) = mp! + 0 ') (1.3)

We now introduce notations which make use of (5.6), z = A — n?

8 (u, 2) = pd (R + RE — Ryd), @, 2= 8, ) —pinm? (1.4)
From (6.4) it follows that
8 (1, 2) = p* [(Ry + iRy) (Ry — iRy) + RaRs] < 2u'R* @, 2) =

= 2415 (2) D) [ing (9)* (k + 1) (7.5)
k=0

210+1

Since My, z) = O(u ) when { — 0, we see that

M, ) <P () ) bng @I+ 1) =

k=2l—38
= %2 (20— 2) g (D — 2= 3) e D) U —png (D (7.6
The expression ¥ [8(u, z)] will be holomorphic in the region (6.6) if
[TL(r, P) | << p¥'m? (7.7)
or
2122 (20 — 2) (g @2 1r — (21— 3) (g ED¥ IS (1 — g (@) (7-8)

If we introduce the notation

8 = Tig () + 12 (21 — 2) [11g () 1* 1 m-2
82 = T1%q(P) + 21% (21 — 3) Inig (p))¥m (7.9)
then the inequality (7.8) will be satisfied if

r= (& + V8.2 — 61, 8,2 > 8, (7.10)

Let us evaluate the right~-hand side of equation (5.7) in the region
(6.6) taking into account (7.10) and the condition a, = 0. We have
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|—pao+p2Ry + VO @ ) |<rlaol+Pumé—pe— )14+ mrl V2 (7.11)

Introducing the quantity
M=ria|+rPnré—p—rm-'+ V2n (7.12)
and applying Lemma 5.1, we obtain the next theorem.

Theorem 7.1. The expansions of A _,(w) and A ,(u) (1.3), Wwith a, =0
and with the fulfillment of (7.2), converge if

Ip)< r* = rp%(p + 2M)-2 (7.13)
and are dominated by the series
[o0]
P2 (p - 2M)? A
n?+ m k§1 (F) > }"nl ), A'ng W) (7-14)

For the computation of the quantities r, p and M we find the first
non-zero coefficient bl = c¢; in the expansion

M @) — Ay @) = 1 — c)p+ Gr— e p 4. ..+ Gy —c ) p"+ ... (7.15)
and set
m=0.5 (b, —¢)+0 (7.16)

Let us take an arbitrary p, 0 < p < 4. From (6.5) and (7.16) we com-
pute the numbers 81 and 52 (7.9), and after that the quantities r (7.10)
and ¥ (7.12).

Example 7.1. For the equation of Mathieu (4.13) it has been found
that A = 4 ([e], p.25)

Ay =4+2pt—. ., hpa) =4—Lpr ... (7.17)

From (7.15) and (7.16) we find I = 2, = = 0,25,

Let p = 0.25, g(p) = 0.267 (4.2). Prom (7.9) we have 51 = 6, 52= 3.3.
From the formula (7.10) we obtain r = 0.0854. The equation (7.12)
implies that ¥ = 0.0066. Finally, the radius of convergence (7.13)

r* = 0.08. The expansion (7.17) is known to be convergent when
lul < 0. 0s.

8. The above derived results are valid only in case the series that
defines y,; (4.2), (6.5) converges. For a discontinuous function a(t) in
(1.1) this series will always diverge. One can extend the above obtained
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theorems to the case when the function a(t) (1.2) and its square are
Lebesgue integrable on [0, w] provided one considers the convergence of
the serjes (3.3), (3.4), (5.2) and (5.4) as convergence in a Hilbert
space l2 ([3]. p.92). Hence, we shall restrict ourselves to the ex-
tension of the Theorems 4.1, 6.1 and 7.1 to the case of a bounded func-

tion a(t)

la@®|<p —ocltl+ o0, p= const (8.1)

From (8.1) and from Bessel’s inequality ([3]. p.92), it follows that

o0

(o @emtan<n 2 < llewra<s @2
0

$=—00 h

Q-

lap) =1

Let us construct a series, which dominates (3.4) and (5.4), by making
use of the inequality (8.2) alone. We shall have, for example, for (5.4)

© , oo Y, °°, Vs
| S eda@a < (Y 1a_ai*d,f(a>)/ (3 1er) <sao
a==—o00 a=—0 =0
© © s
| S aeda® g gdn ® gy (N 1o, Pt @) 5.3
a,f=-—00 a=—00
o 7R oo 2
(3 taapiaz®) (X 1aplt) <rel( ete.
B=—c0 Bz==—c0

Here z = A — n?

0 s © 2
e"(z)=( 2 d,.’(k)) == ( 2 [(n—{-.‘Zki)’—M2 )

k==—00 K==—00
udy 1 v h— )\ "
= (_2 [4k(n+k)—z]’> ( Z k’(n—{-—k)’) =M@ 64
Y2
’ 1
(3 e @5
In particular, we obtain for n, (n =0, 1, 2, ...) the values 8.6

Yy o 2

;2" - 1 1 ~1.98
= {2 ;.2 F) =147, = (2 kzlm < (o.s kzl F> = 1.
k=1 = =

For n = 2, 3, 4,
‘/l q 1 I/!

( Zk’(n—-}-k)’-l— Z‘ kz(k+n)2> <<3(nn+i)z+n__1)

k=—n+1
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So that

e <147, n3< 0.84, M <068, <059 ete.

From the evaluations (8.3) we find the dominating functions for Rl,
- 34 (5.6). Namely,

R, + iRy <€ pPe,(1 — ppey-t, Ry + iR <€ pe, (1 — ppe,)? 8.7

Comparing (8.7) and (6.4), we find that the estimates coincide if in
(6.4) we set

T = Play Te=p (8.8)

Since the remaining derivations coincide, we obtain a theorem which
is a consequence of the Theorems 4.1, 6.1 and 7.1.

Theorem §.1. Suppose that the function a(t) of equation (1.1) satis-
fies the inequality (8.1), where a(t) and its square are integrable on
lo, «].

1. The expansion, which determines the boundary of the zero region
of instability of Ao(u), converges under the condition (4.10) and it is
dominated by the series (4.9) where the quantities y; and y, are given
by the formulas (8.8) and (8.6).

2, If e #0 (n=1, 2, ...), that is, condition (6.15) is fulfilled,
then the expansions which determine the nth region of instability of
Anl(u), An2(u) (1.3) are dominated by the series (6.17) which converges
under the condition (6.16). The quantities o and py are evaluated by
means of the formulas (6.14), (8.8), (8.8) and (6.12). The formulas
(6.12) can be replaced by the following ones:

x1=10.25 2+ V32 pP,la,l-, xe=V2p (8.9)
3. If it is known that

Ay @) — Ay () = 2mp! + 0 ') (1=23,..) (8.10)

then the expansions Anl(u), Anz(u) are dominated by the series (7.14),
and they converge if the condition (7.13) is fulfilled. The quantities
r, p and M are evaluated in the same way as in Theorem 7.1 with the con-
dition that the numbers y, and y, have already been determined by means
of the formulas (8.8) and (8.86).

Example 8.1, Let us consider the differential equation

Py /di2 4+ A —pa @)y =0 (8.11)
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where a(t) is a saw-shaped periodic function

a(t+a)=a(t), a@|< n
Issp= (8.12)
a()=— D 2nlsin2nt, o()=—n-+2 t(£[0,n
n=-1
From (8.8) we have

T1 = po= 4.62, T2 = p = 3.14 (8.13)

The expression for Ao(u) converges if
Ini<m =4V 11+ V712)-% = 0.26 (8.14)

Let us evaluate the radius of convergence r* of the expansion
1, (1) and h 2(u) From the equation (8.9) we have ,an} = n'l,
la2r =1, The quantitles X and X, we obtain from (8.9), the quantities

o and Po from (6.14)

x1=10.8, X2 = 4.44, ro = 0.04186, po = 2.2 (8.15)

Finally, from (6.16) we obtain the condition for convergence of the
expansions Al 1 (1) and Al 2(K) which determine the first region of in-
stability

Ip | < r*= ropo® (Po + 4x2ro)-% = 0,023 (8.16)
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