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1. The following differential equation is considered 

Here a(t) is a real periodic function of t, with period w determined 
by the expansion 

a(t)= i u8etist, a_# = &, Imao= (1.2) 
pL=-cG 

Let us assume that some of the first few terms of the expansions de- 
termining the boundary of the region of instability on the plane of the 
parameters H, h have been found by the method of a small parameter ([I], 
P. 321). Here A,,(M) 3 A,,(M) 

We shall attempt to obtain estimates of the functions Ed and Ed 
in terms of the coefficients as of the Fourier series (1.2) and of some 
already known coefficients bs and cs of the expansion (1.3). 

847 
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2. On the boundary of the region of instability of the equation 
there exists a periodic solution of period 2n and of the form [II 

k=-a 

Substituting (2.1) into the equation (l.l), we find an infinite 
system of linear algebraic equations for the determination of the 
quantities yk 

[A - (n + 24’1 yk - p $j =&_s Ys = ’ (k = 0, f 1, f 2, . . .) 
*=--co 

(1.1) 

(2.U 

(2.2) 

The condition for the existence of a nontrivial periodic solution of 
the equation (1.1) of period 2t yields an equation that determines the 
boundary of the region of instability. One can obtain this condition in 
explicit form if one equates to zero the infinite determinant of Hill. 
The latter can be transformed into a finite order determinant [21. A 

more natural procedure is the use of a method ([31, pp. 164 to 168) used 
already earlier for the equation (1.1) in the work [d. This method is 
employed below, and it leads to an equation that coincides with an equa- 
tion of the work [21. 

For the time being, let us exclude from our consideration the two 

equations of (2.2) for which k = 0, and -n (when n = 0, we exclude only 
one equation with k = 0). The quantities yk(k f 0, -n) shall be ex- 
pressed by means of complex-conjugate quantities yo, y_,. We substitute 
the obtained expressions for yk(k # 0, -n) into the remaining two equa- 
tions (when n = 0 only one equation) in order to find ye and y_,. The 
condition for the existence of a non-zero solution y,, determines the 
boundary of the region of instability. 

3. Let us consider the zero region of instability n = 0. We introduce 

the notation 

d, (k) = [S + (n + 2k)2]-1 

When k $ 0, the equations (2.2) can be written in the form 

(3.1) 

y, = p 3 do (k) “k-8 Y, + Pdo (k) akY@ (k = f i, -I 2, . . .) (3.2) 
11=-w 

The prime (‘) on the sum indicates here and in what follows that the 
terms with the indices 0, -II (here --n = 0) are omitted from the sum. 

By the method of successive approximations ([31, p.166) we obtain 
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f,, = p&, (k) ok + p8 3 do (k) ak-_, do (a) ak + . . -1 210 (3.3) 
(I- 

Substituting (3.3) into (2.2) with k = 0 and dividing by yu # 0, we 
obtain 

u_, l&j (a) ua + ps a_= do (4 *,-p do (8 *a + 
@.=--CO a, p=-co 

3.p 5 a_, do (4 s-p do (p) u~_...~ do (T) ay + . . . = ‘I’ h a) 
a. P. Y=--35 

(3.4) 

4. Prom the equation (3.4) one can obtain h,(p) in the form of a 
power series in ~1. Let us construct a dominating series (majorant) for 
the right part W(P, A) of the equation (3.4) of the work [51. 

Suppose that the power series in v of fl(p) (or the series for 

Q1(iA. h) in powers of p and h) is dominated by the series for f2(cl) (or 

Q2W, A)). We will denote this by writing 

h Q < fa 0, 

Let US introduce the notation 

03 

-r1= 2 Ia,I, 78 = max I as I, q (A) = (4 - A)-” 
8 *=--oo 

8#o 

if lA[ < 4 w e obtain for d,,(k) in (3.1) the relation 

(4.2). 

&, (k) zw (& - 4ka)-” < (4 - A)--’ = P (A) (k = f 1, * 2, . . .) (4.3) 

If one considers the system of equations (3.2) in the linear normed 
space II, then the system of equations (3.2) will be entirely regular 
(131, PP. 63,167) when g.kyiy,q(h) < 1. Hereby the right-hand side of (3.4) 
y(cl, h) fs dominated by the series 

Solving the equation 

a = PTr [I - pr1 (4 - a)-‘]-1 

for A, we obtain the function A(P) which dominates 

(4.5) 

151 the solution 
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A,(P) of the equation (3.4) 

b C) = 2 + 0.51r (RI - 71) - v4 - * (Tl + 71) + 0.x+’ (71 - TrY - 

= 2 + (up(Tz-- n)--2I/Ii--.wc(o/~+ vfij"I 11 - OX+ (v/71- )/?&4X) 

Let us introduce the notation, which makes use of the quantities y,, 

yx determined by (4.2) 

hi = 0.25 (r/r,+ I%‘, h.2 = 0.25 (v-71--- -viz (4.7) 

It is easy to verify the inequality 

v/(1 - hip) (1 - h9p) < (1 - h&l (1 - &l&)-l = 

1 =_ 
hr - ( 

hr ha 
hv iii&7=j& 1 = &- 8~’ (hi+‘- hi+‘) (4.8) 

i’k0 

Computing directly in (4.6) the coefficients of the powers 11’. ~1 
and dropping the terms with h, in (4.8). we obtain a series which 
dominates A,(P). the solution of the equation (3.4) 

hl = 0.25 o'< + 6)' (4.9) 

We have thus obtained the following theorem. 

Theorer 4.i. The expansion of the function A,(P) in powers of CI. 
which determines the boundary of the zero region of instability 

(A, (cl) -Oasp- 0) of the solutions of the equation (1.1). is doni- 
nated by the series (4.6) which converges when 

(4.10) 

Note 4.1. Since yI > yt (4.2). it follows that h-’ > ylml. Therefore 
the series which determines A,(I.I) converges when 

IpI<pr-T1-'= 
(.~j‘#JaJ,-l 

(4.11) 

Note 4.2. Let us introduce into (3.4) a new parameter A’ = A - We. 
Then one can construct a dominating function for I(v. A) (3.4) which 
does not contain terms O(V). This yields a new condition for convergence 
of the series that defines h,(p) 
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lpl<pLs = 4L%-‘W~+ 2 VW, Ps > Pl>b (4.12) 

Note 4.3. From the convergence of the expansions of h,,(P), h,,,(P) 

(1.3) follows the convergence of the power series in IA of the periodic 

solutions of the equation (1.1). 

Example 4.1. Let us find the condition for convergence of the series 

defining h,(cl), the boundary of the zero region of instability of the 

equation of Mathieu ([61, PP. 18.25) 

day [ dt2 + (A - 2f.L cos 2t) y = 0 (4.13) 

we 

From (1.2) we find al = a_l = 1. From (4.2) and from (4.10) to (4.12) 

obtain 

Tl = 2, 7% = 1, ~1 zz 0.69, pz = 0.5, pa = 0.83 (4.14) 

The series for A,(P) ([61, p. ) is 

(4.15) 

which is known to converge when JCIJ < 0.83. 

Example 4.2. For the differential equation 

ky / dt2 + [h + /L (i + 2 cos 2t + 4 cos 4t)] y = 0 (4.16) 

we obtain by the method of a small parameter ([l], p. 321) the equation 

hoQ=-p--p2+EQ4, E tP) = 0 @“, (4.17) 

From (4.2). (4.7) and (1.2) we find 
(4.18) 

.a0 = - 1, al = a-1 = - 1, aa = a-2 = - 2, Tl = 7, ‘rr = 2, hl = 4.07 

From (4.9) we obtain an estimate for E(P) when c1 < 0.245 I I 

(4.19) 

I. Let us consider the case n # 0; n = 1, 2, . . . . We will take the 

equation (2.2) in the form 

03 

yk = p 2’ d,, 6) (lk--s Ys + W,, @) takYo f ak+d_n) (5.1) 
#=--CO 
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The method of successive approximations [21 yields, when k # 0, --n 

v~=P(d,(k)ak-l-~ 2’ dnW~k_,dn(a)a,+... yo+ 
a=- 1 

+ P r d,, (4 Q+~ i- P f$ 4, (N %-_a. d,, 04 a,+, i- . . . 3 y-n (5.2) 
a-- 

Substituting yk(k + 0, -n) from (5.2) into the remaining two eona- 
tions (2.2) when k = 0, -II, we obtain a system of tro equations in two 

unknowns ye, Y_,' 

fib, N Yo + fn c, k_) Yla = 0, r; @, A) YO + ‘il @, J-1 y-n = 0 (5.3) 

The bar above the letters indicates the complex conjugate. The func- 
tions fl and f2 have the form 

(5.4) 

The condition for the existence of a non-zero solution of the system 
(5.3) yields the equation of the boundary 

Ir1c,Ul”- If*c,Nla=o (5.5) 

Assuming that h and u are real, we introduce the notation, when 

A = Z + n2 

Re ji @(, A.) = I - n’ + PO + P’& 6, z), Im ji C, A) = PRI C, 2) 

Re h (cr. A) = P Re en -I- P’RI C, 2). lm 1% C, A) = Ir lm en + pa& C, 2) 
(5.5) 

The equation (5.5) solved for z = A -n2, yields 
(5.7) 

ZS- p. + pa& f ,‘ps I a, Is + i$ba (Re qJb + Im Q&I + r(’ W + ha - RC) 

It is necessary to determine the region of convergence of the series 
that determines the solution h,(u) of the equation (5.7). ue introduce 
an auxiliary lemma ([51, p.52). 

Lemma 5.1. Suppose that r(p) is an implicit function of u defined by 

the equation 

2 = g1* + gYo$ + g1yz + go%zx + . . . = I c, 4 (5.8) 
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where the right-hand side ‘!(I& z) is a holomorphic and bounded function 

when 

In this case z(p) is given by a series which converges when 

lPl<r* = rp= (p + 2&f)-2 (5.10) 

and the series for z is dominated under the condition (5.10) by the 
series 

k=l 

(5.11) 

Proof. Let us solve the auxiliary equation whose right-hand side 

dominates the function ‘Y(p, z) ([51, p. 52) 

z = M (1 - +)-l (1 - zp-l)-l - M - ~llzp-~ (5.12) 

From (5.12) we have 

< ;;(;t$: 5 ( yk ( p+p2M ),, 
k=l 

(5.13) 

The stated lemma follows from (5.13). 

6. Let us consider the case an # 0. that is the case for which the 
width of the region of instability is O(u). From (5.7) we obtain as a 
first approximation 

h,=n2--uo~C11a,I+O(C12), 6,5 (b, - Cl) = I a I # 0 (6.1) 

Let us evaluate the functions RI, . . . , R, in (5.6). From (3.1) and 
(4.2) we have the inequalities for the powers of t = h - n2 

d,, (A) = ]h - (n + 2k)‘]-’ = [h- n2 - 4n (n + k)]-l 4 q (z) (6.2) 

where 

z= h- n2, q (2) = (4 - 2)-l, 121<4 (6.3) 

Analogously to (4.4) we obtain from (5.4) and (5.6) the estimates 
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(6.4) 

where, similarly to (4.2). we use the notation 

71= 5 IU@I’ 7% = max I aa 1 (I = 0, + 1, 2 2, . . .) (6.5) .¶ r=--oJ 
Wo. -n 

The radical in (5.7) will be a holomorphic function of u and z (6.3) 
in the region 

lPl<r. IZI<P. KP<4 (6.6) 

if the Pollowing inequality is satisfied in the region (6.6): 

I Z?p J a, I -2 (Re a, RI + Im a&) + JA’ 1 anI -2 (RP + Ibe - W) I < f (6.7) 

By means of the obvious inequality 

a + bi 1.1 c + di I = I (a f bi) (c - di) I = 1 UC -I- db f i (bc - ad) ) 2 I ac -I- db / (6.8) 

and the notation ROJ, z) of (6.4). the inequality (6.7) can be trans- 
formed into the form 

2r la, I-‘R (r, P) + r2 Ia,I-2R2 (r, p) <I (6.9) 

or 

rlo,I-lR(r,P)<V~- I, OdP<4- rll [(f/z+ 1) ‘rt Ia, I -’ -I- 11 03.lW 

When the inequality (6.10) is satisfied, the function represented bY 
the root in (5.7) will be holomorphic in the region (6.6). Let us esti- 
mate the right-hand side of equation (5.7) in the regions (6.6) and 
(6.10). From (6.7) and (6.10) it follows that the next inequality is 
fulfilled in the region (6.6) 

- PO+ p*~~f{11?la,12+~S(R c a,,Rs + im a&) + p* (Re2 i- R% - Rs2)3”’ 1 < 

Q r I a0 1 + ?R (r, p) + r I a, I r/Z < r II sol + (2 V-F- 1) b,il 2 M (6.11) 

We introduce the notation 

XI = 0.25~1 [(VT+ I) ?‘z @,I-’ + 11, x9 = 0.5 II a0 i 5 (2 r/T-- IN an I1 (6.12) 

In order to obtain, with the aid of Lemma 5.1, the largest value r* 
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of the radius of convergence of the expansion h,(p) (of the solution of 

(5.7)) in powers of IA, one must find 

i) = max rp* (p + 4x2+‘, OdP,<4@- q(l), 06r (6.13) 

By the usual method we find that the maximum is attained when 

ro = 2 (2x1 +x0 + V& + &x,x2)-‘, Po=4(~-_x1ro) 

Prom Lemma 5.1, and from what has been said above, we deduce the next 
theorem. 

Theorem 6.1. The expansions of h,,(u) and A,,(u), witb a,, # 0 in 
(1.2)‘ where an can be determined by the relation 

a, = 6.52% u-l C&r W - A,, CN + 0 (6.15) 

converge when 

I p I < r* = roPoa (PO + 4x2r0)-a (6.16) 

where ru, pe are determined in (6.14). (6.12.) and (6.5). These expansions 
are dominated by the series 

(6.17) 

Note 6.1. The radius of convergence r* (6.16) may turn out to be con- 
siderably less than the actual radius of convergence. 

Example 6.1. For Matbieu’s equation (4.13). with n = 1, we have 
1 a,1 = 1 # 0. From (6.5) we obtain y1 = 1, y2 = 1. From (6.12) we have 
x1 =0.853. x2 = 0.915. From the formula (6.14) we find that r,, = 0.38, 

PO = 2.7. Finally, from (6.16). the radius of convergence r* = 0.156, 
while the dominating series (6.7) has the form 

1 + 2 ; (6.4& >)htx @I, &,a @) 
k=l 

(6.18) 

The actual expansion A,, 1 (W, A,,,(M) has the form ([Sl, p.25) 

(6.19) 

7. We shall now consider the last case for (1.1) when a,, = 0. From 
(6.1) it follows that 
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hl Q - 4t2 Cl = 0 C”) (1 = 2, 3, . . .) (7.1) 

Suppose that we know the first coefficients be, C, (S = 1, 2, . . . , r) 
of the expansion (1.3), and that we have found that ” 

bl - c1=0, . . ..bl_l-- q__l= 0, 4 - q=2m>O 

From the equations (5.7) and (7.2) it follows that 

vu4 (%a + &a - RP) = mu + 0 @‘+‘) 

We now introduce notations which make use of (5.6), z = h - n2 

8 @, z) = u4 (Baa + R> - &a), l-I Q, 2) = 8 (Jl, 2) - $9 

From (6.4) it follows that 

8 QL, 2) = CI’ [(RI + iR,) (R, - Q?I) + R&21 4 2pQ2 @, 4 = 

= ~wYPq2 (4 ; h?b)lk(~ + 1) 

k=o 

Since fl(u, L) = O(p2’+1) when l.~ - 0. we see that 

n @, 2) < 2&rar&Jx (2) 5 IIL-rrq @)I* (k + I) = 
k=21-3 

= spr22 [(2Z - 2) tpr1q (z))2'-'- w- 3) w1q (4Pl (i- lrr1 Q (W2 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

The expression J [8(cl. z)] will be holoaorphic in the region (6.6) if 

I n (r, PI I < p2Q (7.7) 

OT 

2rr2 l(U - 2) (TlQ (P))2’-1r - (21- 3) (TV7 W2!df (1 - PYlQ w2m2 (7.8) 

If we introduce the notation 

al = rlq (P) + ra2 (21- 2) IT14 (p)12’-’ m-2 
a2 = r?q(P) + z-r22 (21 - 3) I'TlQ (P)121m-2 (7.9) 

then the inequality (7.6) will be satisfied if 

___.._- 
r = (ol + )/a12 - 6,)-l, al2 > 62 (7.10) 

Let us evaluate the right-hand side of equation (5.7) in the region 
(6.6) taking into account (7.10) and the condition an = 0. We have 



857 The convergence of series 

I- pa0 + $I?, f 1/ 8 01, 2) 1 d r I a0 I + +r~ra (4 - P - ~TI)-’ + md V2 (7.11) 

Introducing the quantity 

M = r I a0 1 + r2r~rt4 (4 - p - ry~)-l + VTm’ (7.12) 

and applying Lemma 5.1, we obtain the next theorem. 

Theorem 7.1. The expansions of h,l(p) and A,,,(V) (1.3), with a,, = 0 

and with the fulfillment of (7.2). converge if 

Ipl< P = rP2 (P + 2Mk2 (7.13) 

and are dominated by the series 

( 1 $ k > A,, (cl)* A,, (P) (7.14) 

For the computation of the quantities r, p 
non-zero coefficient bl - cl in the expansion 

A,, C) - An2 C) = @I - ci) p + (bz - cz) p2 + . . 

and set 

m = 0.5 (bl - cl) # 0 

and h4 we find the first 

* + @, - c *) p+ . . . (7.15) 

(7.16) 

Let us take an arbitrary p, 0 < p < 4. From (6.5) and (7.16) we com- 

pute the numbers 6, and 6, (7.9). and after that the quantities r (7.10) 

and M (7.12). 

Example 

that A = 4 

7.1. For the equation of Mathieu (4.13) it has been found 

( [61, P. 25) 

&(IL) = 4+p-. . ., k,,,(y) =4-J&G+-. . . (7.17) 

From (7.15) and (7.16) we find 1 = 2, ~JI = 0.25. 

Let p = 0.25, q(p) = 0,267 (4.2). From (7.9) we have 6, = 6. 6, = 3.3. 

From the formula (7.10) we obtain r = 0.0854. The equation (7.12) 

implies that M = 0.0066. Finally, the radius of convergence (7.13) 

r* = 0.08. The expansion (7.17) is known to be convergent when 

\pt < 0.08. 

8. The above derived results are valid only in case the series that 

defines yl (4.2). (6.5) converges. For a discontinuous function a(t) in 

(1.1) this series will always diverge. One can extend the above obtained 
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theorems to the case when the function a(t) (1.2) and its square are 
Lebesgue integrable on [O, nl provided one considers the convergence of 
the series (3.3). (3.4). (5.2) and (5.4) as convergence in a Hilbert 
space I* (L31, p. 92). Hence, we shall restrict ourselves to the ex- 
tension of the Theorems 4.1. 6.1 and 7.1 to the case of a bounded func- 
tion a(t) 

I a 0) I Q Ps ---<t-C+=. p = const (8.1) 

From (8.1) and from Bessel’s inequality ([31, p. 92)) it follows that 

Let ut3 construct a series, which dominates (3.4) and (5.4), by making 
use of the inequality (8.2) alone. We shall have, for example, for (5.4) 

m 

IB 
I 

a-,A (4 % ) d ( 3 I =, I2 dnz t.4 ) ‘I’ ( 2 I a, iz) “’ < p%, lz) 
(1=-W LX==--00 cl==--03 

00 
I 

I 2 c-A (a) a,_&, (PI apI d ( %f I u__~ Ia dn2 (a)) ” 
Or.B=+U Cl=--03 

(8.3) 

m 

(2 ’ I a,_pI'd,~(P))"' ( 3 Iup ~2)“z\ip3~nz(3 etc. 
, 

Lb-W (h-00 

Here 2 = h - n* 

(8.4) 

(8.5) 

In particular, we obtain for qn (n = 0, 1, 2, . . .) the Values 
(8.8) 

qJ= (2 i h’(;+ J< (0.5 5 $&8 
k=l k=l 

For n = 2, 3, 4, . . . 
m 

(2 1 
tin== 2 kS (s + k)” + g k2 (k + s)2) “’ < (3 (sn; 1)z + A) “’ 

k=l . k=--n+l 
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So that 

qa < 1.17, ?la< 0.84, % < 0.68, qs < 0.59 etc. 

From the evaluations (8.3) we find the dominating functions for Rl, 

. . . . R, (5.6). Namely, 

Rl + m<p*q1- pFQ-1c R,+ ~R~~d%,(~-w,J" (8.71 

Comparing (8.7) and (6.4). we find that the estimates coincide if in 
(6.4) we set 

Tl= I&t* % = p (8.8) 

Since the remaining derivations coincide, we obtain a theorem which 
is a consequence of the Theorems 4.1, 6.1 and 7.1. 

Theorem 8.1. Suppose that the function a(t) of equation (1.1) satis- 
fies the inequality (8. l), where a(t) and its square are integrable on 

Eo. d. 

1. The expansion, which determines the boundary of the zero region 

of instability of h,(p), converges under the condition (4.10) and it is 
dominated by the series (4.9) where the quantities y1 and yz are given 
by the formulas (8.8) and (8.6). 

2, If aa f 0 (n = 1, 2. . . .), that is. condition (6.15) is fulfilled, 
then the expansions which determine the nth region of instability of 
A,,(P), h,,(u) (1.3) are dominated by the series (6.17) which converges 
under the condition (6.16). The quantities r. and p,, are evaluated by 
means of the forraulas (6.14). (8.8). (8.8) and (6.12). The formulas 
(6.12) can be replaced by the following ones: 

3, If 

x1= 0.25 (2 + v’?ij p2rln I a, I-‘, 

it is known that 

then the 
and they 
r, p and 
dition that the 
of the formulas 

&, 8 - hnz tp) = 24 + 0 @‘+‘I (2 = 2, 3, . * .) @.10) 

expansions A,,(P), h,,(v) are dominated by the series (7.14), 
converge if the condition (7.13) is fulfilled. The quantities 
M are evaluated in the same way as in Theorem 7.1 with the con- 

(8.9) 

numbers y1 and yz have already been determined by means 

(8.8) and (8.6). 

Example 8.1. Let us consider the differential equation 

d2y I dt2 + (A - Pa @)I Y = 0 (8.11) 
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where c(t) is a saw-shaped periodic function 

a (t -t n) -= a (t), a (1) I < p = n 

a (t) = - i 2n-‘sin 2nf, a (t) = - n + 2t, t El07 nl 
r,- 1 

From (8.8) we have 

71 = p~)o = 4.62, Te = p = 3.14 

The expression for A,(p) converges if 

(8.12) 

(8.13) 

(8.14) 

Let us evaluate the radius of convergence r* of the expansion 

“ia;t = 

(cl) and A,,,(I.I). From the equation (8.9) we have I=,,] = n-‘, 

1. The quantities x1 and x1 we obtain from (8.9). the quantities 

re and pO from (6.14) 

xi = 10.8, x2 = 4.44, ro = 0.0416, PO = 2.2 (8.15) 

Finally, from (6.16) we obtain the condition for convergence of the 

expansions A,,,(p) and A, g , (p) which determine the first region of in- 

stability 

! u I < I.*= rope” (PO + 4Xzro)- ‘L =. 0.02j (8.16) 
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